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Abstract. We present a semiclassical analysis of the dynamics of Rydberg states of atomic hydrogen driven
by a resonant microwave field of linear polarization. The semiclassical quasienergies of the atom in the
field are found to be in very good agreement with the exact quantum solutions. The ionization rates of
individual eigenstates of the atom dressed by the field reflect their quasiclassical dynamics along classical
periodic orbits in the near integrable regime, but exhibit a transition to nonspecific rates when global chaos
takes over in phase space. We concentrate both on the principal resonance where the unperturbed Kepler
frequency ωK is equal to the driving field frequency ω and on the higher primary resonance ω = 2ωK . The
latter case allows for the construction of nondispersive wave packets which propagate along Kepler ellipses
of intermediate eccentricity.

PACS. 05.45.+b Theory and models of chaotic systems – 32.80.Rm Multiphoton ionization and excitation
to highly excited states (e.g., Rydberg states) – 42.50.Hz Strong-field excitation of optical transitions
in quantum systems; multi-photon processes; dynamic Stark shift

1 Introduction

The dynamics of atomic Rydberg states under external
periodic driving have been under intensive study for more
than two decades [1,2]. The surprising experimental ob-
servation [1] of the efficient excitation and ionization of
Rydberg states by an electromagnetic field of frequency
comparable to the Rydberg level spacing led to the inter-
pretation of this process in terms of the underlying chaotic
classical dynamics of the driven Rydberg electron [3]: al-
though a single trajectory is perfectly deterministic, the
global motion – when averaged over initial conditions –
is similar to a diffusive motion, leading to excitation and
eventually “chaotic” ionization of the Rydberg electron.
Hence, microwave driven Rydberg states had been iden-
tified as the prototype of atomic systems which allow for
the direct monitoring of the temporal evolution of a quan-
tum system with a classically chaotic counterpart. Due to
the explicit time dependence of the excitation and ioniza-
tion processes, quantum limitations of the global, classi-
cally chaotic transport, nowadays known under the term
“dynamical localization”, have been predicted and experi-
mentally verified [3–8]. However, further experimental ev-
idence has suggested that besides global features of the
quantal transport process, there are signatures of local
structures in classical phase space emerging from experi-
mental ionization threshold values [9]. The theory of dy-
namical localization ignores stable islands in phase space
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that protect the classical electron from wandering towards
the ionization threshold; apparently, these islands are re-
sponsible for an increased value of the driving field am-
plitude needed to ionize the atom when prepared in an
appropriate initial atomic state [10].

The largest of these stable structures in phase space
is created by the principal resonance between the driving
field and the (fundamental harmonic of the) unperturbed
Kepler motion of the Rydberg electron. In terms of the
principal quantum number n0 of the initial atomic state,
the Kepler frequency ωK = n−3

0 has to be matched by
the driving frequency ω, i.e. ωn3

0 ' 1. Indeed, for fixed
ω, the experimental ionization threshold, defined as the
field amplitude F needed to cause appreciable ionization
in a fixed amount of time, is larger for “resonant” states
n0 ' ω−1/3 than for their immediate neighbors [2,5,6,9].
However, the initial state of the atom is not well-defined by
the principal quantum number alone. Also, the state of the
art ionization experiments lack selectivity with respect to
the remaining quantum numbers [2]. Consequently, such
experiments can only probe the atomic dynamics in the
“ionizing” quantum number n0: they average over the re-
maining dimensions of classical phase space in a more or
less well-defined way. Probably for this reason, most of the
theoretical studies of the problem have been so far ded-
icated to the interpretation of the quasi one-dimensional
(1D) ionization process as suggested by the extremely rich
experimental data [3], or to the justification of the under-
lying quasi one-dimensional picture on the grounds of the
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real, time dependent problem in a 2D configuration space
(the third dimension being cyclic due to the azimuthal
symmetry around the field polarization axis) [3,11].

Only recently there have been theoretical studies of the
quantum dynamics of the real 3D Rydberg atom explor-
ing all the dimensions of configuration space [12,13]. One
major focus of this recent work was the characterization
of individual states of the atom dressed by a microwave
field which is resonant with the unperturbed Kepler mo-
tion. For some of these Floquet eigenstates (also known as
eigenstates of the dressed atom), the probability density of
the electron propagates in time along a classical periodic
orbit of the system, being locked onto the external Kepler
frequency. Such states have been baptized “non spreading
wave packets”. They have been predicted more than 20
years ago [14], and some of their realizations have been
described in 1D model systems [15]. However, the fact
that the individual Floquet states have a wavepacket like
time evolution was realized only later for linearly polarized
microwaves [16,17]. Independently, a similar observation
was made in circular polarization where Gaussian wave
packets were shown to propagate almost without disper-
sion along circular periodic orbits [18]. References [19,20]
identified the cause of this nondispersive evolution in the
population of a wave packet eigenstate of the atom in the
field.

It has also been observed that the non spreading wave
packet eigenstates have extremely small individual ioniza-
tion rates [16,17,19–21] making them behave like quasi-
classical “quantum particles”. This is due to the fact that
they are trapped inside a resonant island and can escape
and ionize only via chaos assisted tunneling, i.e. tunneling
outside the resonant island followed by chaotic diffusion
towards the atomic continuum [20,21].

These wave packet states can be prepared by appropri-
ate switching of the driving microwave field from a well-
chosen initial atomic state [19,22], and their identification
should be possible by spectroscopy of the Floquet energy
spectrum [23,24] through a weak probe field, in analogy
to the spectroscopy of dressed states in quantum optics
[25]. However, for typical experimental field strengths,
spectroscopy will detect a large number of narrow reso-
nances, only few of them corresponding to nondispersive
wave packet eigenstates. It is therefore desirable to have a
precise estimate of the position of these particular states
within the spectrum.

It is the purpose of the present contribution to provide
an estimate for the energies of wave packet eigenstates, by
the semiclassical quantization of the underlying classical
dynamics of a Rydberg state driven by a resonant field
of linear polarization. Such a study has already been per-
formed for 1D atomic hydrogen [26] but it is of limited
use for the real 3D dynamics of the atom. Similar but less
involved calculations than those to follow have been pre-
sented earlier for the case of a resonant, circularly polar-
ized field in either 2D [19] or 3D [20], and of a nonresonant,
linearly polarized field [27].

The comparison with an exact quantum calculation
will allow us to test the accuracy of the semiclassical pre-

diction for the quasienergies. At the same time, we shall
be able, as in the nonresonant case [27], to observe a neat
signature of the classical dynamics in the ionization rates
of the individual eigenstates (though locally disturbed due
to quasidegeneracies with sublevels of adjacent Rydberg
manifolds) in the near integrable regime. This signature is
progressively destroyed as the classical excitation process
turns chaotic. Finally, our present contribution also pro-
vides several classical trajectories along which non disper-
sive wave packets can be launched. In particular, we will
show that non spreading wave packets propagating along
a “true” Kepler ellipse (neither a circle, nor a straight line)
can be populated using the ω = 2ωK resonance between
the field and the unperturbed classical dynamics. It has
been shown recently that similar states can be created by
a combination of a ω = ωK resonant microwave field and
of a static electric field [28].

2 Classical resonance approximation revisited

To perform the semiclassical quantization of the problem,
we follow the classical picture of [29] further developed in
[11]. The averaging method allows then to identify differ-
ent time scales in the problem and split the dynamics into
two weakly interacting one-dimensional motions. We refer
the reader to the original papers for details, presenting
below the main steps only. Consistently, the calculations
presented here consider the effect of the microwave field as
a perturbation of the field-free dynamics and only include
the lowest non-vanishing order, which will be sufficient for
quantitative interpretation of the quantum spectra, see
Section 3. Extension of the same approach as to include a
static electric field which enables the manipulation of the
wavepacket trajectories is presented elsewhere [28].

The Hamiltonian of a Rydberg atom driven by a lin-
early polarized electromagnetic field writes, in the length
gauge, using atomic units, neglecting relativistic effects,
assuming an infinite mass of the nucleus, and employing
the dipole approximation:

H =
p2

2
−

1

r
+ Fz cos(ωt), (1)

with the polarization vector of the field parallel to the
z-axis.

To remove the explicit time dependence (necessary for
the semiclassical quantization [30]) we first pass to the
extended phase space [31], which comprises time as an
additional generalized coordinate. The quasienergies will
then be the quantum energy levels of the new Hamiltonian
H defined by

H = pt +H, (2)

with pt the momentum canonically conjugate to time t. H
is conserved during the temporal evolution of our system.

In the absence of the external field, the Kepler motion
is integrable and traces a fixed (i.e. time-independent) el-
liptical trajectory. The associated action-angle variables
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are well-known. First, for the motion along the Kepler
orbit they are I, the principal action (corresponding to
the principal quantum number of the unperturbed hydro-
gen atom) and the canonically conjugate angle θ measur-
ing the position of the electron along the Kepler ellipse.
Then, the orientation of the Kepler ellipse in space is asso-
ciated with two Euler angles ψ, canonically conjugate with
the total angular momentum L, and ϕ, canonically conju-
gate with M , the z-component of the angular momentum.
The angle ψ conjugate to L has a direct physical mean-
ing: for M = 0, the case we shall focus on in the sequel
(the extension to other M values being straightforward),
it represents the angle between the Runge-Lenz vector A
(oriented along the major axis) of the Kepler ellipse and
the polarization vector of the field.

In these action-angle variables (I, θ), (L, ψ), (M , ϕ),
we obtain [29]

H = pt −
1

2I2
+
F

2

√
1−

M2

L2

+∞∑
m=−∞

Vm

× {cos(mθ + ψ − ωt) + cos(mθ + ψ + ωt)} , (3)

with

Vm =
I2

m
[J ′m(me) +

√
1− e2

e
Jm(me)], m 6= 0, (4)

V0 = −
3

2
eI2, (5)

e =

√
1−

L2

I2
, (6)

where e is the eccentricity of the Kepler orbit of the Ry-
dberg electron, and Jm, J ′m denote the Bessel functions
and their derivatives, respectively. The absence of ϕ in
the Hamiltonian reflects the azimuthal symmetry around
the field axis and ensures the conservation of M .

In these new coordinates, the possible primary reso-
nances between the Kepler motion and the driving field
are immediately recognized: any time the frequency of the
driving field matches a harmonic of the unperturbed mo-
tion, sθ − ωt ' constant, the corresponding terms in the
Fourier expansion (3) vary slowly and provide the ma-
jor contribution to the sum over the Fourier index m.
More precisely, following secular perturbation theory [31],
a transformation to slowly varying variables

θ̂ := θ −
ωt

s
, Î := I, p̂t := pt +

ωI

s
, (7)

yields

H = p̂t −
1

2Î2
−
ωÎ

s
+
F

2

√
1−

M2

L2

×
+∞∑

m=−∞

Vm

{
cos

(
mθ̂ + ψ + (

m− s

s
)ωt

)
+ cos

(
mθ̂ + ψ + (

m+ s

s
)ωt

)}
. (8)

Note that, while in the original coordinates, the Hamil-
tonian (3) is time-periodic with the microwave period
T = 2π/ω, the change of coordinates produces the Hamil-
tonian (8) periodic with period τ = sT . This will become
important for the semiclassical quantization below.

In the next step, we average H over the fast variable t
(i.e. over one period τ), and we are left with the secular
Hamiltonian

Hsecular = p̂t −
1

2Î2
−
ωÎ

s

+
F

2
{Vs cos(sθ̂ + ψ) + V−s cos(sθ̂ − ψ)}, (9)

which generates the secular (i.e. slow) evolution of the
electron’s trajectory under the external driving. After the
further substitutions

χs(L,ψ) :=
1

2

√
V 2
s + 2VsV−s cos(2ψ) + V 2

−s, (10)

tanβs(L,ψ) := −
Vs − V−s
Vs + V−s

tanψ (11)

we obtain the compact form

Hsecular = p̂t −
1

2Î2
−
ωÎ

s
+ Fχs cos(sθ̂ − βs). (12)

The above procedure is valid at first order in F . Higher
order expansions, using, e.g., the Lie algebraic transforma-
tion method [31], are possible. An example is given in [27]
for the non-resonant case at second order. Consistently,
at the lowest non-vanishing order, χs and βs are constant,
evaluated at the value of the resonant action:

Î = Is =
(ω
s

)−1/3

, (13)

and are consequently functions of L and ψ only.
Although the secular Hamiltonian acts in a four-

dimensional phase space (Î , θ̂, L, ψ), the dynamics is
rather simple because there are different time scales, which
implies an adiabatic separability in the spirit of the Born-
Oppenheimer approximation. The shortest time scale is
the Kepler period, already eliminated by passing to the
secular Hamiltonian. This is valid only close to the res-
onance zone, i.e. for Î close to Is. Thus we can expand
the Hamiltonian, equation (12), around the centre of the

resonance island, i.e. in powers of Î − Is. This gives, at
second order, a standard pendulum Hamiltonian whose
“gravitational field” scales as Fχs(L,ψ). Hence, we ex-

pect the period of the motion in (Î , θ̂) to be of the or-

der of 1/
√
Fχs(L,ψ). This is the second scale. For the

motion in the (L,ψ) plane, the equations for the evolu-
tion of L and ψ, generated with the secular Hamiltonian,
are obviously such that both dL/dt and dψ/dt are propor-
tional to F . Hence, the period of the (L,ψ) motion will
typically be of the order of 1/F, much longer than the

one of the fast motion in (Î , θ̂). This allows for the adia-
batic separation of the variables. The adiabatic constant
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of the motion is χs(L,ψ) itself. The fast motion in the

(Î , θ̂) plane is thus similar to a pendulum with constant
gravitational field proportional to this adiabatic constant,
a problem which can be completely solved. There are li-
brational modes where the Rydberg electron is trapped
in the resonance island and rotational modes where the
electron escapes the resonance island. The motion in the
(L,ψ) plane follows curves of constant χs(L,ψ), at a veloc-
ity which depends on the average over the fast variables.
The size of the resonance island in (Î , θ̂) is determined by
the characteristics of the motion in L and ψ. As we shall
show below, these characteristics may strongly depend on
the resonance number s. Finally, let us mention that this
approach using adiabatic separability was used in [11,32]
to estimate the ionization thresholds with the help of the
Chirikov overlap criterion.

Before proceeding with the semiclassical quantization,
we take advantage of the scaling properties of the classical
dynamics [33], by virtue of the substitutions

Hsc,0 := λHsc, (14)

Î0 := λ−1/2Î , (15)

L0 := λ−1/2L, (16)

F0 := λ2F, (17)

χs,0 := λ−1χs, (18)

ω0 := λ3/2ω, (19)

t0 := λ−3/2t, (20)

with λ being an arbitrary positive scaling factor. The com-
mon choice [2,3] is

λ = −
1

2E
= n2

0, (21)

where E is the initial energy of the electron with principal
quantum number n0. We adopt the same scaling below.

3 Semiclassical versus quantal results

The approximate separability of the temporal evolution
in angular momentum and principal action makes the
semiclassical quantization of our problem quite straight-
forward. In fact it constitutes a direct application of the
semiclassical theory of periodically driven quantum sys-
tems as described in [30].

To find the semiclassical quasienergies of the Flo-
quet eigenstates, we use the EBK quantization rules for
Hsecular , which, because of the adiabatic separability dis-
cussed above, reduce to the well-known WKB quantiza-
tion rules in the (Î , θ̂) and (L,ψ) planes. Indeed, with
the standard quantization rule, the classical quantity pt
has to be replaced by (1/i)(∂/∂t). The quantum oper-
ator generated from H with this quantization rule and
periodic boundary conditions in time is nothing but the
standard Floquet Hamiltonian [13] whose eigenvalues are
the quasienergies of the Floquet eigenstates. In the secular

approximation – as discussed above – we can use Hsecular

instead of the full H.
The (p̂t, t) motion is easily quantized because the time

variable is absent in equation (12): hence p̂t remains con-
stant. Using the periodicity in time, one finds:

1

2π

∫ τ

0

p̂t dt =
p̂tτ

2π
= k, (22)

where, recall, τ = 2sπ/ω is the period of (8). The above
quantization condition thus yields an additive term equal
to kω/s in the semiclassical energy, with k an arbitrary in-
teger. Hence, semiclassically, the spectrum associated with
the states localized in the s resonance island repeats it-
self along the energy axis at distances ω/s. We shall come
back to this interesting point below, when discussing the
specific case of the s = 2 resonance.

Taking advantage of the different time scales of the
(Î , θ̂) and the (L,ψ) motion [11], one can quantize the
classical dynamics in the spirit of the Born-Oppenheimer
approximation. We first quantize the fast (Î , θ̂) motion,
keeping L and ψ fixed, according to

1

2π

∮
κ

Îdθ̂ = q +
ν

4
, (23)

where κ is the closed classical trajectory in the (Î , θ̂) plane.
This yields the semiclassical energy spectrum as a contin-
uous function of the χs(L,ψ) parameter. The final step is
to perform the quantization of the (L,ψ) motion:

1

2π

∮
γ

Ldψ = p+
µ

4
(24)

where γ stands for the closed classical trajectory in
the (L,ψ) plane. This provides the desired discrete
quasienergy levels Ep,q + kω/s, with p, q, k three integers.
µ and ν are the Maslov indices [34] along the classical
trajectories considered.

As we describe resonantly driven states, κ is chosen
inside the resonance island in the (Î , θ̂) plane. The position
of the island is determined by the value of ω and by the
choice of the order s of the resonance. For s = 1, e.g., we
will choose ω = 1/(21)3 such that the island is centered

around Î = n0 = 21.
In practice, we first quantize the motion in the (L,ψ)

plane, equation (24), determined by χs. The quantized
values of χs are then plugged into equation (23), what

allows to proceed with the quantization in the (Î , θ̂) plane.
As, in both quantization equations, χs is a constant, we
can apply the two quantization rules in any order we wish.

For comparison with the semiclassical results, the ex-
act quantum mechanical quasienergies together with the
associated ionization rates have been obtained by numeri-
cal diagonalization of the full Floquet Hamiltonian H, be-
yond the secular approximation. The details of the method
which also allows for the representation of the associated
wave functions [35], are described in [13]. In short, the
atomic part of the Hilbert space is represented by a Stur-
mian basis set, and complex scaling is used to treat the
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Fig. 1. Equipotential curves of the angular part χ1 of the secu-
lar Hamiltonian Hsecular representing the slow evolution of the
Kepler ellipse followed by a Rydberg electron, under the influ-
ence of a linearly polarized microwave field in resonance with
the Kepler frequency of the electronic motion, represented in
the plane of the L0 and ψ coordinates. L0 represents the total
angular momentum (scaled such that a circular trajectory has
L0 = 1) and ψ the canonically conjugate angle measuring the
angle between the axis of the field polarization and the ma-
jor axis of the Kepler ellipse. The separatrix emanating from
the unstable fixed point (L0 = 0, ψ = 0) separates rotational
and librational motions, both “centered” around their respec-
tive stable fixed points (L0 = 1, ψ – arbitrary) and (L0 = 0,
ψ = π/2). The former corresponds to a circular orbit centered
around the nucleus and lying in the plane containing the field
polarization axis. For such a circular orbit, the direction of the
Runge-Lenz vector is not defined, thus ψ is arbitrary. The sec-
ond stable fixed point represents a straight linear orbit perpen-
dicular to the field axis. The unstable fixed point corresponds
to straight linear motion along the polarization axis. However,
this initially degenerate Kepler ellipse will slowly precess in
the azimuthal plane. The equipotential curves shown here are
those satisfying the quantization condition (24), for n0 = 21
and p = 0 . . . 20. The motion in the (L0, ψ) plane is indepen-
dent of F0, in our first order treatment.

coupling to the continuum accurately. The quasienergies
obtained are of the form εj = Ej − iΓj/2, where Ej gives
the real part of the quasienergy (defined modulo ω) while
Γj is the width (ionization rate) of the eigenstate of the
atom in the field.

3.1 1:1 resonance

Let us consider first the case s = 1, i.e. microwave frequen-
cies ω ' ωK = 1/n3

0, or ω0 = 1. This is a case of particular
interest for the construction of nonspreading wave packets
[16–20,23,28,36]. We choose n0 = 21 which is a reason-
able compromise between the requirement of being in the
semiclassical (large n0) regime on the one hand, and the
size of the Floquet matrix to be diagonalized on the other
hand.

Figure 1 shows the equipotential curves of χ1 in the
(L0, ψ) plane which are used as closed loops γ for the semi-
classical quantization, equation (24). In fact, for a compar-

1.0 0.5 0.0 0.5
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>

(a) (b) (c)

Fig. 2. Equipotential curves of the secular Hamiltonian
Hsecular describing the motion of a Rydberg electron in a res-
onant microwave field, in (Î , θ̂) coordinates, corresponding to
the atomic principal quantum number and the polar angle of
the electron on the Kepler ellipse, respectively. The scaled mi-
crowave amplitude is F0 = 0.03. Since the equipotential lines of
Hsecular depend on the transverse motion in L0 and ψ via the
constant value of χ1 only (corresponding to a fixed quantum
number p of the transverse motion), contours (solid lines) are
shown for 3 characteristic values of χ1. Only the orbit satisfy-
ing (23) with q = 0, for n0 = 21, is shown, together with the
separatrix separating librational from rotational motion in the
(Î, θ̂) plane. The separatrix defines the size of the principal res-
onance between the atom and the field. Panel (a) corresponds
to the orbit with L0 ' 1 (rotational orbit, p = 20), panel (b) to
the orbit close to the separatrix of the angular motion (p = 10),
panel (c) to the librational orbit close to the stable fixed point
L0 = 0, ψ = π/2. Note that the resonance island is smallest
for librational, largest for rotational, and of intermediate size
for separatrix modes of the angular motion.

ison with quantal data, the equipotential lines plotted cor-
respond to the quantized values of χ1 for n0 = 21. There
are librational orbits with stable fixed points at L0 = 0
and ψ = π/2, 3π/2, representing a straight line orbit per-
pendicular to the field direction. Because of the azimuthal
symmetry, these two points are equivalent. The orbit ac-
tually corresponds to motion with maximal radial compo-
nent of the Runge-Lenz vector A, i.e. Aρ = 1. The rota-
tional orbit with L0 = 1 corresponds to a stable circular
orbit centered around the nucleus, in a plane containing
the field polarization axis. An alternative representation
of the (L,ψ) motion on the unit sphere, spanned by L
and the z and ρ-components of the Runge-Lenz vector,
contracts the equipotential line representing this orbit in
Figure 1 to another elliptic fixed point [27] with a sur-
rounding librational motion. In both cases, the appropri-
ate choice of the Maslov index in equation (24) is µ = 2.
The straight line orbits along the field polarization axis
correspond to the unstable fixed points L0 = 0, ψ = 0, π
(Az = 1), defined by the self-intersection of the separatrix
between rotational and librational modes.

Once the value of χ1 along one of the trajectories of
Figure 1 has been determined under these premises, we
can perform the quantization of the (Î , θ̂) motion with the
quantized value of χ1. Figure 2 shows the equipotential
lines of Hsecular , for the three values of χ1 correspond-
ing to the stable circular, as well as to the stable and



150 The European Physical Journal D

0 5 10 15 20
p

1.135

1.125

1.115

1.105

1.135

1.125

1.115

E
ne

rg
y 

 (
10

3
 a

.u
.) 1.135

1.130

1.125

1.120

(a)

(b)

(c)

Fig. 3. Comparison of the semiclassical quasienergies (cir-
cles) originating from the unperturbed n0 = 21 manifold (i.e.
with q = 0, see Eq. (23)) with the exact quantum values
(crosses), at different values of the (scaled) driving field am-
plitude F0 = 0.02 (a), 0.03 (b), 0.04 (c). The agreement is ex-
cellent. The semiclassical quantum numbers p = 0 . . . 20 label
the quantized classical trajectories plotted in Figure 1, start-
ing from the librational state |p = 0〉 at lowest energies, rising
through the separatrix states |p = 10〉 and |p = 11〉 to the
rotational state |p = 20〉.

the unstable straight line orbits, respectively. In each case
the contour for the lowest state q = 0 has been drawn,
together with the separatrix between librational and rota-
tional (Î , θ̂) motion. The separatrices determine the size of
the principal resonance island for the different substates
of the transverse motion. Note that the principal reso-
nance is largest for the stable circular orbit, whereas the
weakest coupling in Î is obtained in the vicinity of the
straight line orbit perpendicular to the field axis. In fact,
for this latter orbit itself, the first order coupling vanishes
entirely. This shows that the semiclassical results obtained
from our first order approximation (in F ) of the Hamilto-
nian may be quite inaccurate in the vicinity of this orbit.
Higher order corrections may be important.

As shown above, the classical motion in the (L,ψ)

plane is slower than in the (Î , θ̂) plane. Hence, it is ex-
pected that states with the same q quantum number, but
successive p quantum numbers will lie at neighboring en-
ergies, building manifolds. The energy spacing between
states in the same manifold should scale as F0 while the
spacing between manifolds should scale as

√
F0. The quan-

tum calculations fully confirm this point of view, the man-
ifolds originating from the degenerate hydrogenic energy
levels at F0 = 0.

We first concentrate on the q = 0 manifold, originat-
ing from the n0 = 21 hydrogenic states. Figure 3 shows
the comparison between the semiclassical and the quan-

Fig. 4. Level dynamics of the exact quantum quasienergies
(dotted lines) in the vicinity of the resonant manifold emerging
from n0 = 21 (q = 0), compared to the semiclassical prediction
(full lines), for F0 = 0 . . . 0.06. Note that the maximum field
amplitude exceeds the typical ionization thresholds measured
in current experiments at the principal resonance ω ' ωK .
Nonetheless, the semiclassical prediction accurately tracks the
exact solution across a large number of avoided crossings, ei-
ther with side bands of distant Rydberg levels, or with the
adjacent Rydberg manifolds n0 = 20 and n0 = 22 (mixed by
the microwave field) entering the plot from below.

tum energies, for different values of the scaled driving field
amplitude F0 = Fn4

0. The agreement is excellent, except
for the lowest lying states in the manifold for F0 = 0.02.
The energy level lowest in energy (p = 0) corresponds to a
motion close to the stable fixed point L0 = 0, ψ = π/2 in
Figure 1; the highest energy level (p = 20) corresponds to
the rotational motion L0 = 1. The levels with the smallest
energy difference (p = 10, 11) correspond to the librational
and the rotational trajectories closest to the separatrix,
respectively. The narrowing of the level spacing in their
vicinity is just a consequence of the slowing down of the
classical motion [37].

Figure 4 shows a global comparison of the semiclassical
prediction with the exact level dynamics (energy levels vs.
F0), in a range from F0 = 0 to F0 = 0.06, which exceeds
the typical ionization threshold (F0 ' 0.05) observed in
current experiments [2,13]. We observe that the semiclas-
sical prediction accurately tracks the exact quasienergies,
except in the region of very small F0 where the size of the
resonance island in (Î , θ̂) space is very small. Particularly
impressing is the fact that, except at avoided crossings,
the agreement is quite good even in regions where the res-
onant n0 = 21 manifold overlaps with adjacent Rydberg
manifolds, or with side bands of lower or higher lying Ry-
dberg states.

The semiclassical construction of the energy levels
from classical orbits is – necessarily – reflected by the
localization properties of the associated eigenstates, as
demonstrated by the electronic densities of the states
|p = 0〉, |p = 10〉, and |p = 20〉 in Figure 5, for the same
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Fig. 5. Electronic den-
sities of the extremal li-
brational (p = 0, left),
the separatrix (p = 10,
center), and the extremal
rotational (p = 20,
right) quasienergy states
in cylindrical coordinates
(ρ, z), at different values
of the driving field ampli-
tude F = 0.02 (top), 0.03
(middle), 0.04 (bottom),
averaged over one pe-
riod of the driving field.
Note the clear localiza-
tion along the classical
orbits corresponding to
the respective contours
in Figure 2, for all field
amplitudes. The nodal
lines of the electronic
densities clearly exhibit
the direction of the un-
derlying classical motion.
Each box is ± 1000 Bohr
radii in both ρ and z di-
rections. The microwave
polarization axis along z
is in the vertical direction
of the figure.

field amplitudes as in Figure 3. Their localization along
the classical orbits defined by their respective (un)stable
fixed points is obvious [27]. Note in particular the nodal
structure of the state |p = 10〉, associated with the unsta-
ble fixed point: there are sharp nodal lines perpendicular
to the z-axis, reflecting the dominant motion along the
z-axis, but also nodal lines of low visibility in the angu-
lar direction. They are a manifestation of the slow classi-
cal precession of the Kepler ellipse, i.e. the slow secular
evolution in the (L,ψ) plane. The quantum state, how-
ever, dominantly exhibits the motion along the z-axis, as
a signature of the effective separation of time scales of the
radial and the angular motion, which was used above to
deduce the secular Hamiltonian Hsecular [23]. It should
be realized that the quasiclassical localization properties
of the eigenstates are essentially unchanged as F rises,
despite various avoided crossings which occur at interme-
diate field values, as obvious from Figure 4.

In contrast, Figures 6 and 7 show the evolution of the
ionization rates of the individual substates of the resonant
manifold q = 0 (n0 = 21), in linear and logarithmic scales,
respectively. At low amplitudes (e.g. F0 = 0.02) the rates

exhibit a largely unambiguous signature of the localiza-
tion of the eigenstates and of the underlying classical dy-
namics, with extremal states being very stable while the
states near the separatrix p ' 10 ionize faster. The slight
shift to higher p values is in nice agreement with classical
resonance analysis [32] indicating that elliptical orbits of
high eccentricity are most vulnerable to microwave per-
turbation. This shows the limitations of the well-known
1D model; for an extended discussion, see [32]. The en-
hancement of the widths in the vicinity of the unstable
fixed point is another manifestation of the stabilizing effect
of classical structures surrounding stable periodic orbits.
Only locally in the control parameter F , isolated avoided
crossings of individual substates of the manifold (p = 0
and 19 in Fig. 7 at F0 = 0.02) with adjacent Rydberg lev-
els or sidebands of more distant states may perturb this
picture, by enhancing the rate of the state which under-
goes the avoided crossing (see also Fig. 4) [21]. However, at
higher field strengths where the classical dynamics turns
chaotic, the various states are strongly mixed with adja-
cent manifolds and the rates loose their specificity. That
explains the almost flat distribution of the rates over the
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Fig. 6. The ionization rates of the states shown in Figure 3.
While for small F0, the rates change significantly over the man-
ifold with a maximum in the vicinity of the separatrix states,
this specificity of rates with respect to the classical motion is
lost for most of the states at higher F0, despite them being
associated with the ground state q = 0 of the (Î , θ̂) resonance
island and therefore remaining localized along the quantized
(L,ψ) trajectories – as suggested by the excellent agreement
of semiclassics and quantal quasienergies in Figure 3.
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Fig. 7. Same as Figure 6, but on a logarithmic scale for the
ionization rates.

manifold, at F0 = 0.04 (with however, large fluctuations
related to chaos assisted tunneling as explained in [21]).
This observation of a transition from (L,ψ) specific (tun-
neling) rates (out of the resonance island) below the chaos
transition to nonspecific rates at driving amplitudes above
this transition explains the quasi one-dimensional appear-
ance of the experimentally measured ionization thresh-
olds [2].

We already mentioned earlier that the eigenstates dis-
played here are localized along classical trajectories which
are resonantly driven by the external field. Hence, we

Fig. 8. Temporal evolution of the electronic densities for the
extremal rotational quasienergy state |p = 20〉 of the n0 = 21
resonant manifold, for different phases ωt = 0 (left), ωt = π/2
(center), ωt = π (right) of the driving field, at amplitude
F0 = 0.03, represented in cylindrical coordinates. Each box is
± 700 Bohr radii in both ρ and z directions. The state actually
represents a nondispersing wave packet shaped like a dough-
nut, moving periodically from the north to the south pole (and
back) of a sphere. For higher n0, the longitudinal localization
along the circular orbit should become better and better. The
microwave polarization axis along z is in the vertical direction
of the figure.

should expect them to exhibit wave packet like motion
along these trajectories, as the phase of the driving field
is changed. This is shown in Figure 8 for the state p = 20
with maximal angular momentum L0 = 1 [23,36]. Due to
the azimuthal symmetry of the problem, the wave packet
is actually a doughnut moving periodically from the north
to the south pole (and back) of a sphere, slightly de-
formed along the field direction. The interference resulting
from the contraction of this doughnut to a compact wave
packet at the poles is clearly visible at phases ωt = 0 and
ωt = π in the plot. Note that the creation of unidirectional
wave packet eigenstates moving along a circle in the plane
containing the field polarization axis is not possible for
the real 3D atom, as opposed to the reduced 2D problem
studied in [36], due to the abovementioned azimuthal
symmetry.

For other states in the n0 = 21 resonant manifold, the
longitudinal localization along the periodic orbit is less
visible. The reason is that χ1 is smaller than for the p = 20
state, leading to a smaller resonance island in (Î , θ̂) and
consequently to less efficient localization. Going to higher
n0 values should improve the situation.

Let us finally briefly discuss “excited” states in the
principal action island, i.e. manifolds corresponding to
q > 0 in equation (23). Figure 9 shows the quantal level
dynamics with the semiclassical prediction for q = 1 su-
perimposed. The states in this manifold originate from
n0 = 22. We observe quite good agreement between quan-
tal and semiclassical regime for higher lying states in the
manifold (for which the principal action island is large).
For lower lying states the agreement is reached for higher
values of F0. If F0 is too low, the states are not fully lo-
calized inside the resonance island (which, due to its size
may contain a single state only, with q = 0) and, conse-
quently, are badly reproduced by the resonant semiclassi-
cal approximation. This is further exemplified in Figure 10
where the case q = 2 is shown. Here, the agreement is
much worse than for smaller values of q and is observed
only for large F0 and large p. This confirms the picture
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Fig. 9. Comparison of the exact quantum level dynamics (dot-
ted lines) of states originating (at F0 = 0) from the n0 = 22
(q = 1) manifold with the semiclassical prediction obtained
from quantizing the classical motion within the resonance is-
land. For sufficiently high F0, these quantum states are cap-
tured by the principal resonance island and correspond semi-
classically to the first excited state of the motion in the (Î, θ̂)
plane, i.e. q = 1 in equation (23). Since the island size depends
on the (L,ψ) angular motion (value of p in Eq. (24)), states
with large p first enter the resonance zone. For them good
agreement between quantum and semiclassical quasienergies is
observed at lower F0 values than for states with small p.

Fig. 10. Same as Figure 9, but for q = 2. The quantum states
originate from the manifold n0 = 20. The resonance island in
(Î, θ̂) coordinates is too small to support some q = 2 states
for F0 < 0.03, as seen from the negative slope of the states.
The quantum states “cross” the separatrix and successively
enter the resonance zone, starting from the largest value of
p in equation (24) (the resonance island size increases with
p). Even for large F0 > 0.04, only a minority of the states
in the n0 = 20 manifold is well-represented by the resonant
semiclassical dynamics.

that the validity of the semiclassical approach presented
is directly related to the size of the resonance island in the
(Î , θ̂) space.

3.2 2:1 resonance

Consider now the s = 2 resonance, i.e. the case when
the microwave frequency is twice as large as the Kepler
frequency (ω ' 2ωK). This situation may serve as an
example of a general s:1 resonance. As for the s = 1
case, we first study and quantize the slow motion in the
(L,ψ) plane. Figure 11 shows the corresponding equipo-
tential lines of χ2 in the (L,ψ) plane – calculated from
equations (10, 4), i.e. completely expressible in terms of
Bessel functions – (for a comparison with quantal data,
the equipotential lines correspond to quantized values of
χ2 for n0 = 42).

One immediately notices that the secular motion in
this case is topologically different from that corresponding
to the s = 1 resonance (compare with Fig. 1). Again, the
unstable fixed points L0 = 0, ψ = 0, π, corresponding
to the straight line orbits parallel to the field polarization
axis, are the origin of the separatrix dividing (L0, ψ) space.
Similarly, stable fixed points exist for L0 = 0, ψ = π/2
and L0 = 0, ψ = 3π/2, corresponding to the straight line
orbit perpendicular to the polarization axis (as for s = 1,
due to azimuthal invariance, this is really a single orbit
or rather a family of equivalent orbits perpendicular to
the polarization axis). Also, there is again a stable fixed
point corresponding to the circular orbit (represented by
the line L0 = 1, arbitrary ψ).

However, there are also new fixed points: an unstable
fixed point at L0 ' 0.77, ψ = π/2, 3π/2 corresponding
to unstable elliptical orbits with major axis perpendicu-
lar to the polarization axis, and two stable fixed points at
L0 ' 0.65, ψ = 0, π, which correspond to stable ellipti-
cal orbits with major axis parallel and antiparallel to the
polarization axis. Importantly, for these new stable fixed
points, the resonance island in (Î , θ̂) coordinates is quite
large (as revealed by the light background designing large
values of χ2 in the grayscale plot of Fig. 11). Thus, the
motion in the vicinity of these fixed points is strongly con-
fined both in the angular coordinates (L0, ψ) and in the

(Î , θ̂) coordinates: the corresponding eigenstates should
be nonspreading wave packets localized both longitudi-
nally along the orbit (locked on the microwave phase) and
in the transverse direction. Furthermore, note from equa-
tion (1) that ψ = 0 changes to ψ = π (or z changes to −z)
if we change F0 to −F0, that is if we shift the phase of
the microwave by π. Consequently, for a given microwave
field phase, the two stable points correspond to distinct
classical dynamics.

By contrast, the other stable points, the circular orbit
and the straight line orbits perpendicular to the polariza-
tion axis, lie in the minima – in fact, the zeroes – of χ2. For
the latter, the coupling vanishes at first order in F , exactly
like in the case of the s = 1 resonance. Also, the circular
orbit, which corresponds to a maximum of χ1 (leading
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Fig. 11. Equipotential curves of the angular part χ2 of the sec-
ular Hamiltonian Hsecular. They represent the slow evolution
of the classical Kepler ellipse followed by a Rydberg electron,
exposed to a linearly polarized microwave whose frequency is
twice the Kepler frequency of the unperturbed motion; the
equipotential curves are plotted in the (L0, ψ) plane. The light
shaded regions correspond to maxima of χ2, the dark shaded
regions to minima of χ2, and thus to the size of the resonance
island in the (Î, θ̂) motion, by virtue of equation (12). The sta-
ble fixed points lie at extrema of χ2. Note that, despite the
rotational invariance of our problem in configuration space,
the stable fixed points corresponding to elliptical trajectories
at L0 ' 0.65, ψ = 0, π correspond to distinct classical dynam-
ics. The equipotential curves shown here are those that satisfy
the quantization condition (24), for n0 = 42 and p = 0 . . . 41.
As in Figure 1, the motion in the (L0, ψ) plane is independent
of F0.

to strong localization in the (Î , θ̂) coordinates) defines a
minimum of χ2. The reason is simple: the motion on the
circular orbit is purely harmonic and no coupling is possi-
ble for ω = 2ωK . Thus we expect that the corresponding
island in (Î , θ̂) space, appearing for trajectories close to

the circular orbit, is quite small and localization in θ̂ not
very effective, either.

To be able to clearly separate quantum states localized
in different parts of the (L0, ψ) phase space, and also to
observe the details of the wavefunctions in more detail, we
semiclassically quantize the classical motion in the n0 =
42 resonant manifold (and not n0 = 21 as for the s = 1
resonance), choosing the microwave frequency as:

ω = 2ωK =
2

(42)3
· (25)

A second reason to choose a higher n0 value is the strength
of the resonance coupling in equation (4), i.e. the possible
values of χ2. The coupling is significantly weaker than
for s = 1, the maximum value of χ2 being about 2.5 times
smaller than the maximum value of χ1, for the same values
of F and unperturbed action (in other words, exciting the
system at twice his internal frequency is less efficient than
excitation at the internal frequency). Consequently, for

the size of the resonance island in the (Î , θ̂) plane to be
sufficiently large to capture quantum states, we either have
to increase F0 to values beyond the classical chaos border
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Fig. 12. Comparison of exact quasienergies of states originat-
ing from the n0 = 42 manifold (depicted by pluses) with the
semiclassical prediction based on the quantization of the s = 2
resonance island, for F0 = 0.04. The results of the semiclassi-
cal quantization are depicted by open symbols. Circles corre-
spond to doubly degenerate states localized in the vicinity of
maxima of χ2, around the elliptical fixed point at L0 ' 0.65,
ψ = 0, π in Figure 11. Widely spaced triangles correspond to
almost circular states in the vicinity of the stable minimum
at (L0 = 1, ψ arbitrary), while diamonds correspond to states
localized around the stable minimum at L0 = 0, ψ = π/2 (and
equivalently, due to the azimuthal invariance, ψ = 3π/2). Ob-
serve that the agreement between semiclassical and quantum
energies is very good, provided the size of the resonance island
in (Î, θ̂) coordinates is sufficiently large (high lying states in
the manifold). For low lying states in the manifold the discrep-
ancies between quantum results and semiclassical predictions
are significant, due to the insufficient size of the island.

(which in principle invalidates the secular approximation),
or to go to higher n0.

Figure 12 shows a comparison between the semiclas-
sical quantized quasienergy levels of the Floquet eigen-
states with the quantum spectrum for the whole manifold
n0 = 42, i.e. q = 0 in equation (23), at F0 = 0.04. Ob-
serve that the 16 highest lying states appear in 8 quasi-
degenerate pairs differing by parity. Exact degeneracy
does not happen because of tunneling effects: the lower
the pair of states, the larger the energy splitting of the
pair. The tunneling process involved here is a “tranverse”
tunneling in the (L,ψ) plane, where the electron jumps
from the (L0 ' 0.65, ψ = 0) Kepler elliptical trajectory to
its image by z-parity, the (L0 ' 0.65, ψ = π) Kepler el-
liptical trajectory. It exists only because χ2 has a specific
form with two distinct maxima not lying at ψ = π/2.

The uppermost pair corresponds to states localized
close to the fixed points L0 ' 0.65, ψ = 0, π and are
non spreading wave packets (see below). For these states

(large resonance island in the (Î , θ̂) space), the semiclas-
sical quantization nicely agrees with the quantum results.
On the other hand, the agreement between the quantum
and the semiclassical results gets progressively worse for
lower states in the manifold, when the size of the island
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in (Î , θ̂) coordinates becomes smaller. Still, even for the
lowest states in the manifold, the disagreement between
the semiclassical and quantum results is at most of the
order of the spacing between adjacent levels. Below the
energy of the unstable fixed points at L0 ' 0.77, ψ =
π/2, 3π/2 there are no more pairs of classical trajectories
in the (L,ψ) plane corresponding to distinct classical dy-
namics related by z-parity. Hence, the quasi-degeneracy
has to disappear, as confirmed by the exact quantum re-
sults shown in Figure 12. On the other hand, there are
two regions of the (L,ψ) plane which can give quan-
tized values of χ2 (and consequently quasienergies) in the
same range: the first one is around the stable fixed points
(L0 = 0, ψ = π/2, 3π/2) and the second one around the
stable fixed point L0 = 1. In the semiclassical quantization
scheme, they are completely uncoupled, producing two in-
dependent non-degenerate series of energy levels. The first
region has a larger area and consequently produces more
states; the full spectrum looks rather complicated because
of the interleaving of the two series.

Let us now address the existence of other “mirror”
manifolds, separated in energy by ω/2 = ωK from the
original manifold, which are expected on the basis of equa-
tion (22). This is a manifestation of the fact that the pe-
riodicity of the Hamiltonian (8) is τ = 2T = 4π/ω rather
than T , and is easy to understand classically. Consider
the elliptical fixed point lying in the center of the 2:1 res-
onance zone. Its period is precisely τ , while there exists
also a second, exact replica of the same trajectory, shifted
in orbital phase by π. In other words, two (in phase space)
identical classical trajectories exist which are distinct in
extended phase space since one is shifted with respect to
the other by T . This situation in fact closely resembles the
motion of a particle in a double potential well. Classically,
the motion is confined to one of the two wells, whilst the
corresponding quantum states are the linear combinations
of solutions in each well. They are almost degenerate, and
their energy difference is a manifestation of quantum tun-
neling.

Here, similarly, a single non spreading wave packet
(the analog of the state localized in one well) cannot
build a stationary Floquet eigenstate. Indeed, after one
microwave period (half a Kepler period), it has traveled
only half of the Kepler ellipse and cannot return to the
initial point: the solution is to use a combination of two
such non spreading wave packets, shifted by π. As these
two wavepackets are localized in different regions of phase
space at the same time, they are coupled only by tunnel-
ing. This tunneling process is completely different from the
“transverse” one in the (L,ψ) plane described above. We
here have a “longitudinal” tunneling where the electron
jumps from a location on a Kepler orbit to another loca-
tion further on the same orbit. Since the shift between the
two classical solutions occurs on the time axis, there is a
semiclassical spacing in energy of ω/2. The corresponding
states should be quasi-degenerate modulo ω/2 with the
remaining difference due to quantum “longitudinal” tun-
neling [15]. It has to be stressed that this is a very gen-
eral phenomenon in the vicinity of a s:1 resonance (with
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Fig. 13. Same as Figure 12, but for the “mirror” manifold
shifted in energy by ω/2. While, for most states, the agree-
ment with semiclassics is of the same quality as in Figure 12,
no quantum data are plotted at the bottom of the manifold.
Indeed, at those energies, another Rydberg manifold strongly
perturbs the spectrum due to close accidental degeneracy. Con-
sequently, the unambiguous identification of individual states
is very difficult.

Fig. 14. Electronic density of the uppermost eigenstate of the
n0 = 42 manifold of Figure 12, averaged over one microwave
field period. This state presents localization along a pair of
Kepler ellipses elongated along the field polarization axis. The
box is ± 3500 Bohr radii in both ρ and z directions. The mi-
crowave polarization axis along z is in the vertical direction of
the figure.

s ≥ 2) due to the phase space structure in the (Î , θ̂) plane,
in contrast with the “transverse” quasi-degeneracy due to
the specific form of χ2.

Inspection of the quantum quasienergy spectrum at en-
ergies shifted from the original n0 = 42 manifold by ω/2,
provides the manifold shown in Figure 13, together with
the semiclassical prediction. Observe that the agreement
between quantum and semiclassical quasienergies is simi-
lar to that observed in Figure 12, except for the low lying
states. Here, incidentally, the states anchored to the res-
onance zone are strongly perturbed by another Rydberg
manifold; proper identification of the individual quantum
states is very difficult in this region.

We finally study the properties of the wave functions
associated with the highest states in the manifolds of
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Figures 12 and 13 (i.e. with the largest resonance island in

(Î , θ̂) coordinates). These wave functions should localize
in the vicinity of stable trajectories of period 2, i.e. they
should be strongly localized both in angular and orbital
coordinates, along an elliptical Kepler orbit of intermedi-
ate eccentricity.

However, because of the longitudinal quasi-degeneracy,
we expect to have two wave packets on the ellipse exchang-
ing their positions with period T. Also, because of the
transverse quasi-degeneracy, we should also have combina-
tions of the the elliptical orbits with ψ = 0 and ψ = π. Al-
together, this makes four individual wavepackets for each
Floquet state. Recall from the previously discussed case
of the s = 1 resonance that a single wave packet appears
as a counter propagating pair of two wave packets (or as a
doughnut, see Fig. 8), due to azimuthal symmetry around
the z-axis. Here, we thus expect a single Floquet wavefunc-
tion to be composed of 8 wave packets (or 4 doughnuts)!

The quantum calculations fully confirm this predic-
tion. Figure 14 shows the electronic density of the upper
Floquet state in the n0 = 42 manifold, averaged over one
field period. As expected, it is localized on the two sym-
metric Kepler ellipses but longitudinally delocalized be-
cause of the time average. In fact, there are 4 Floquet
states displaying very similar electronic densities. These
are the pair of upper states in the n0 = 42 manifold and
the pair of upper states in the “mirror” manifold discussed
above.

Figure 15 shows the electronic densities of these 4 Flo-
quet eigenstates for the phase ωt = 0 of the driving field:
the 4 doughnuts are now clearly visible, as well as the
orbital and radial localizations along the two elliptical
trajectories. Very much in the same way as for a double
well potential, a linear combination of these four states
allows for the selection of one single doughnut, localized
along one single classical Kepler ellipse. This wave packet
then evolves along this trajectory without dispersion, as
demonstrated in Figure 16. Here, the temporal evolution
of the electronic density is monitored by application of the
time evolution operator generated by the Hamiltonian H
[13] to the linear combination of Floquet eigenstates.

Note, however, that this simpler wave packet does not
exactly repeat itself periodically, and consequently slowly
disappears at long time, for at least two reasons: firstly, be-
cause of longitudinal and transverse tunneling, the phases
of the 4 Floquet eigenstates will be a little different af-
ter one period which induces spreading, and secondly, the
ionization rates of the individual Floquet states lead to
ionization and loss of phase coherence, especially if the
rates of the 4 states are not equal.

4 Conclusions

We have performed the semiclassical quantization of the
motion of a resonantly driven Rydberg electron of atomic
hydrogen. The semiclassical prediction turns out to pre-
dict the exact positions of the energy levels within a
margin smaller than the average level spacing, for field

Fig. 15. Electronic densities of the eigenstates of the upper-
most doublet states (top) of the n0 = 42 manifold of Figure 12,
and of their mirror states (bottom) shifted by ω/2, at driving
field phase ωt = 0. Compared to Figure 14, one can see the
longitudinal localization on the Kepler ellipses (similar for all
states). On each ellipse, there are 4 different individual wave
packets (or rather, due to the azimuthal symmetry, 2 dough-
nut wave packets) visible, which propagate along the Kepler
ellipse. Notice the phase shift of π in the temporal evolution
on the two ellipses, implied by z-inversion. The microwave
polarization axis along z is in the vertical direction of the
figure.

Fig. 16. Temporal evolution of the convenient linear combi-
nation of the 4 states of Figure 15, for phases ωt = (top left)
0, (top center) π/2, (top right) π, (bottom left) 3π/2, (bottom
right) 2π of the driving field. Clearly, a single doughnut propa-
gating along a single trajectory has been selected by the linear
combination. This wave packet essentially repeats its periodic
motion with period 4π/ω. It slowly disperses, either because
the 4 building states are not exactly degenerate (tunneling ef-
fect) or because it ionizes. The microwave polarization axis
along z is in the vertical direction of the figure.
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strengths even beyond the experimental ionization thresh-
old fields, at least for the principal nonlinear resonance
between the driving field and the unperturbed classical
motion, when ω ' ωK . The transition from near regu-
lar to chaotic excitation in the principal action is clearly
exhibited in the ionization rates of the sublevels of the
resonantly driven Rydberg manifold, which are (L,ψ) spe-
cific in the near integrable regime but nonspecific beyond
the chaos transition. Our semiclassical approach can be
considered as a reliable tool for the identification of wave
packet eigenstates, e.g. in Floquet spectroscopy type ex-
periments [23].
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7. R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U.
Smilansky, H. Walther, Phys. Rev. A 44, 4521 (1991).

8. M. Arndt, A. Buchleitner, R.N. Mantegna, H. Walther,
Phys. Rev. Lett. 67, 2435 (1991).

9. B.E. Sauer, M.R.W. Bellermann, P.M. Koch, Phys. Rev.
Lett. 68, 1633 (1992).

10. J.G. Leopold, D. Richards, J. Phys. B 27, 2169 (1994).
11. J.G. Leopold, D. Richards, J. Phys. B 19, 1125 (1986).
12. A. Buchleitner, D. Delande, Phys. Rev. Lett. 70, 33 (1993);

ibid. 71, 3633 (1993).
13. A. Buchleitner, D. Delande, J.C. Gay, J. Opt. Soc. Am. B

12, 507 (1995).
14. G.P. Berman, G.M. Zaslavsky, Phys. Lett. A 61, 295

(1977).
15. J. Henkel, M. Holthaus, Phys. Rev. A 45, 1978 (1992); M.

Holthaus, Chaos, Solitons and Fractals 5, 1143 (1995) and
references therein.

16. A. Buchleitner, Ph.D. thesis, Université Pierre et Marie
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